strongly cotop modules
Authors
abstract
in this paper, we introduce the dual notion of strongly top modules and study some of the basic properties of this class of modules.
similar resources
Strongly cotop modules
In this paper, we introduce the dual notion of strongly top modules and study some of the basic properties of this class of modules.
full textStrongly noncosingular modules
An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...
full textstrongly noncosingular modules
an r-module m is called strongly noncosingular if it has no nonzero rad-small (cosingular) homomorphic image in the sense of harada. it is proven that (1) an r-module m is strongly noncosingular if and only if m is coatomic and noncosingular; (2) a right perfect ring r is artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...
full textSTRONGLY DUO AND CO-MULTIPLICATION MODULES
Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In additio...
full textStrongly ω-Gorenstein Modules
We introduce the notion of strongly ω -Gorenstein modules, where ω is a faithfully balanced self-orthogonal module. This gives a common generalization of both Gorenstein projective (injective) modules and ω-Gorenstein modules. We investigate some characterizations of strongly ω -Gorenstein modules. Consequently, some properties under change of rings are obtained. Keywords—faithfully balanced se...
full text(n, m)-Strongly Gorenstein Projective Modules
This paper is a continuation of the papers J. Pure Appl. Algebra, 210 (2007), 437–445 and J. Algebra Appl., 8 (2009), 219–227. Namely, we introduce and study a doubly filtered set of classes of modules of finite Gorenstein projective dimension, which are called (n, m)-strongly Gorenstein projective ((n, m)-SG-projective for short) for integers n ≥ 1 and m ≥ 0. We are mainly interested in studyi...
full textMy Resources
Save resource for easier access later
Journal title:
journal of algebra and related topicsPublisher: university of guilan
ISSN 2345-3931
volume 3
issue 1 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023